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ABSTRACT
We propose a framework for analyzing and evaluating system-wide

algorithmic fairness. The core idea is to use simulation techniques

in order to extend the scope of current fairness assessments by

incorporating context and feedback to a phenomenon of interest.

By doing so, we expect to better understand the interaction among

the social behavior giving rise to discrimination, automated de-

cision making tools, and fairness-inspired statistical constraints.

In particular, we invite the community to use agent based mod-

els as an explanatory tool for causal mechanisms of population

level properties. We also propose embedding these into a reinforce-

ment learning algorithm to find optimal actions for meaningful

change. As an incentive for taking a system-wide approach , we

show through a simple model of predictive policing and trials that

if we limit our attention to one portion of the system, we may

determine some blatantly unfair practices as fair, and be blind to

overall unfairness.

CCS CONCEPTS
•Computingmethodologies→Machine learning;Modeling
and simulation; • Applied computing → Law, social and be-
havioral sciences.
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1 INTRODUCTION
Machine learning is proving itself beneficial to society through

advances in medicine, public health, climate change and poverty

research, as well as many other disciplines in the natural and social

sciences. However, many governmental institutions and private

companies have bought into the promise that machine learning
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can solve all problems with enough data. As such, there is a trend

towards automation of important decision-making procedures that

affect the lives of individuals and communities. While the desire for

automation may be driven out of pure profit interests, as is the case

with insurance and advertising companies, governmental institu-

tions and the criminal justice system adopt the use of algorithms

in their wish to improve societal conditions. Paradoxically, imple-

mentation of such algorithms has proven to be detrimental in many

cases. Particularly, the strong dependence on historical data is a

major cause for the reproduction and reinforcement of undesirable

patterns. The data used for training is already biased due to his-

toric discrimination and other structural deficiencies, which leads

to biased machine learning algorithms. See [29], [12] for further

discussion of this point.

Sadly, instances of discrimination occurring due to the applica-

tions of algorithmic tools by public and private institutions, have

mostly gone unchecked until recently. However, in the last few

years much preliminary research has been done on determining sta-

tistical properties of such algorithms and the data they are trained

on. A major area of focus has been on defining measures of fairness

and designing algorithms to satisfy such measures. Such research

has allowed many notions of fairness to be quantified into statistical

properties, see for example, [4] and [28]. In general, not all statis-

tical quantifications of fairness are compatible (e.g. [6],[26]), and

for now the best practice is to choose the most suitable one to the

problem at hand knowing possible drawbacks in other directions.

Since much of this research has been developed to counteract the

harmful effects of industry’s use of algorithmic decision making,

it disproportionately focuses on problem where products and not

processes are the core of analysis, leading to ‘tail-end’ solutions,

a posteriori patches to what is at best a dubious practice. In a

sense, industry’s practices have deviated research into curing the

symptom as opposed to the disease.

We aim to complement that approach by studying the social

dynamics in which these algorithms are implemented. Given the

large-scale transformation these new technologies elicit, a joint

effort of social sciences and machine learning researchers is neces-

sary. Our approach is to implement a system-view paradigm that

can account for context, feedback effects, and structural deficien-

cies in the society using AI tools. We start in a modest manner by

taking a simulation strategy and exemplifying the amenability of

its analysis through a simple case. In particular, we develop a very

simple model of an arrest-recidivism system. We will see that even

if the algorithmic tool itself satisfies certain notions of fairness, the

system may fail to do so. The use of agent based models (ABMs)

helps us realize that phenomenon as well as to find the reason

behind it.

We briefly provide the rationale and structure for a system-wide

analysis framework in Section 2, introduce a simple example model
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in Section 3 and analyze it in Section 4. We conclude with some

future research directions in Section 5.

2 A SYSTEM-WIDE ANALYSIS FRAMEWORK
While fairness and justice have served as catalysts for the new

wave of sound research regarding algorithm accountability, the

fundamental structures and dynamics in which these same fairness

and justice concepts are reified get lost in the background. In the

majority of previous studies, authors have focused on statistical

properties of the algorithms being implemented, acknowledging

the inherent problem in the data and data collection strategies but

not always consolidating such processes as part of the system of

analysis. This concern is particularly relevant for policy makers,

since they ideally will rely on our expertise to take influential

decisions.

Sadly, utilitarian logic has percolated into fairness research in

machine learning, tricking us into thinking that given the use of

an algorithm by a certain institution, our task is to maximize some

type of “utility function”, while keeping the procedure marginally

fair. The main danger of this mode of thought lies in us believing

that algorithms are neutral tools without a social context, and that

improving their use and bettering society means keeping their util-

ity maximum. Notwithstanding the efforts to make algorithms fair,

many of these algorithms are in themselves harmful weapons. For

example, recidivism prediction tools are counterfactually punitive,

working on a double illusion: that a particular individual’s char-

acteristics are those of the statistical aggregate of their inputted

population, and that punishment based on predictions of human

actions are in any way philosophically founded. This might be an

obvious example, but more furtive algorithms are out there support-

ing dubious practices, as it is the case, for example, with targeted

advertisement of junk food to children, where the problem is not

how fair it is but that it exists at all. The same goes for financial and

economic research, where relations of exploitation are not ques-

tioned by algorithm makers, focusing only on maximizing profit.

It is not controversial anymore to say technology reformulates

social dynamics, making our task and responsibility as machine

learning researchers even more delicate and demanding. Technolo-

gies and infrastructures are intertwined with and often etiological

to social relations. The internet and cellular technologies, for exam-

ple, as enhancements of previous communication and information

devices have transformed modern economies, warfare, surveillance,

modes of learning and production, as well as human health and

conceptions of the self. A more fundamental example is the his-

torical transformations of family and gender relations catalyzed

by material conditions ([25], [13]). As already eloquently put by a

well-known economist (pardon the use of “man” as a universal):

Technology reveals the active relation of man to na-

ture, the direct process of the production of his life,

and thereby it also lays bare the process of the pro-

duction of the social relations of his life, and of the

mental conceptions that flow from those relations.

[24]. Hence, we believe a thorough examination of social and arti-

ficial mechanisms is necessary for a true transformation into fair

and ethical societies.

Three principles guide this paper: systemic analysis, causal rela-

tions and mechanisms, and optimal interventions. Systemic anal-
ysis refers to setting the algorithm into a context. This implies

analyzing the data generating process, the decision making stage,

and its consequences all under the same framework. Most previous

research does set its analysis into context and warn of its conse-

quences, however we strive to analyze these portions of the system

together with the algorithm itself, subject to the same quantifica-

tion, processing, and statistical measures. This principle provides

a structure to the system and an engine for its overall dynamics.

Causal relations and mechanisms are imperative in our under-

standing of how (un)fairness arises in a particular system. Note

the difference between causal relations and causal mechanisms.

A causal relation indicates what variable has a causal effect on

another variable, a causal mechanism explains how this effect is

produced. Causal relations are discovered under causal inference

frameworks in statistics; in this paper we use ABMs as resources for

causal mechanism discovery. Finally, although intervention effects

are part of causal analysis, it is not always straightforward to find

optimal interventions when the system under consideration is

too complex or computationally demanding, so we give them their

own special stage. In this paper we take advantage of the nature

of ABM simulations as counterfactuals and embed our ABM in a

reinforcement learning framework in order to find optimal policies,

or parameter combinations, through a principled process.

We propose a system-wide framework based on a reinforcement

learning paradigm. Under this scenario, the agent will be the policy

maker and the environment a conglomerate of social, institutional,

and technological mechanisms, as shown in Figure 1. In the model,

the three mechanisms inside the dashed stage interact in any gen-

eral way, and may do so for a while before an output is observed.

Notice we have explicitly marked in the schematic a “fairness assess-

ment” stage, as different definitions of fairness may yield different

equilibrium points of the system. Indeed, most previous research

on “fair machine learning” regards this stage of the process.

Take as an example the social phenomenon of “street crime” and

the current institutional actions around it. Two particular mech-

anisms have been of interest in the literature: police surveillance

and bail grants. In the schematic the social mechanism would be all

social aspects which relate to crime, the institutional mechanism

pertains to police surveillance and arrests, as well as the eventual

judicial process, and the AI mechanism would be any tool involved

in relevant decision making, for example predictive policing and

recidivism assessment algorithms. Notice this particular case is

that of “street” crime and not crime in general, since more harmful

forms of potentially crime, like environmental, corporate, and war

crimes, are policed in different ways, if policed at all.

Previous work has studied some of the relations inside the en-

vironment stage. The work in [9] and [10] treats the system of

predictive policing as a feedback loop. Notice in our schematic that

this inner loop is different from the outer loop, which allows for

policy interventions by the global policy maker agent. The article

[8] considers fairness when looking at a system composed of many

parts, and arrives at a similar conclusion than this paper that parts

being fair do not yield a system being so.



Figure 1: System Loop

2.1 ABM rationale
Collecting data from and intervening on social systems is an expen-

sive and time-consuming process; inmany situations it is impossible

due to ethical or logistic constraints. Computational models pro-

vide a feasible avenue to understand social systems provided they

exhibit similar characteristics. ABMs are a successful simulation

paradigm in that they can generate a plethora of social dynamics

and allow for policy experimentation. ABMs differ from other mod-

els, for example differential equation-based models, in that they

admit more flexible heterogeneity in their populations (see [32]).

Each agent has its own characteristics and often acts according

to its local environment and imperfect information. This behavior

is more realistic than many classical models of human behavior

where perfect knowledge and rationality were assumed, as well as

a homogeneity in the population.

ABMs are particularly at identifying causal relations by provid-

ing simple generative mechanisms to an observed phenomenon and

since each simulation run can be interpreted as a counterfactual

([21], [23]). A general motto for agent-based modeling is “simpler

is better”, as the distillation of complex dynamics into smaller parts

provides better insight into the system. In a sense, these explanatory

mechanisms can be thought of as the simplest dynamics necessary

to generate our observation. Occam-like induction philosophies

assert these simple mechanisms are the most probable actual causes,

see for example [36].

A general overview of the usefulness and history of agent-based

models in the social sciences can be found in [22]. The book [11]

contains numerous examples of ABMs in the social sciences, their

design, and study. Finally, [40] is a step by step introduction to the

design of ABMs through the popular software Netlogo.

3 AN EXAMPLE MODEL IN POLICING
A notable and now-classic example of particular interest to pol-

icy makers is the unchecked implementation of machine learning

algorithms in the criminal justice system. Our case example will

consider both recidivism prediction and predictive policing.

Regarding recidivism prediction, the 2016 report by ProPub-

lica [3], [19] studied one such algorithm used in Broward County,

Florida, which intended to predict recidivism among defendants up

for parole. The report found out the algorithm was reproducing sys-

tematic bias against people of color and in favor of whites, violating

certain statistical notions of fairness. The creators of the algorithm,

however, argued their algorithm was fair since it satisfied equal

positive predictive values, [6] showed an inherent mathematical

trade-off among these fairness measures when considering het-

erogenous groups. In [7] COMPAS is shown to be as accurate and

fair as a simple linear model and an aggregate of people with little

criminal justice expertise, rebutting the belief that these prediction

tools, if imperfect, are fairer and more accurate than decisions taken

by humans.

The work in [20] shows that predictive policing algorithms re-

inforce historical police activity, resulting in a suboptimal process

through which the algorithm is incapable of accurately estimat-

ing crime rates. A survey of crime forecasting procedures can be

found in [5]. A survey on statistical notions of fairness for algorith-

mic tools in the criminal system is given in [4]. For a civil rights

perspective on the problem, see [16]. The recent book [14] pro-

vides a comprehensive overview of tools, interventions, effects,

and context of algorithmic use in policing and surveillance. Finally,

[15] provides a framework to compare different proposed fairness

metrics.

To understand the arrest-sentence system of interest we start as

simple as possible. We model each member of the population as an

independent agent that randomly moves in a confined region with

demographically similar agents. Besides their membership to one

of two groups, their crime and recidivism rates, agents do not have

other characteristics. We also have a few cops moving, but these

cops interact with population agents when a crime is witnessed,

producing an arrest.

The model is composed of a grid of cells, the world, in which

agents move and act. The agents are divided into cops and two

population groups, G1 and G2. The two populations commit crime

at a constant rate c0, and if a cop is present the crime-committing

individual from the population will get arrested. Cops, who are

unevenly distributed among the populations at the beginning of

the simulation, move “following their noses” according to a stigma
field which places bias in locations with crime history and rein-

forces repeated surveillance. The probability with which a cop will

follow the stigma field is denoted θ and it will have an important

role in the subsequent analysis. Once a population agent is arrested

they undergo a trial stage, for which the trial decision (i.e., go to

jail or not) is based on a random classifier. Notice we have set the

crime and recidivism rates constant across groups. We will see that

even under such assumption an original placement bias of police

can lead to large disparities. For the rationale and justification of

these assumptions, see the appendix.

The purpose of the paper is not to present a novel and compli-

cated ABM for predictive policing or recidivism prediction. The

goal is to present how we could use these models to address the

questions stemming from a system-wide paradigm. We then in-

vite the community to engage in interdisciplinary research and

use these tools for a wide variety of applications. We think such

approach can enlighten us in our efforts to bring about systemic

change.

4 MODEL ANALYSIS
We will use two basic notions of fairness as described by [6]: Predic-

tive Parity and Error Rate Balance. We define them slightly different

than in [6], as they were defined using score outcomes and we use

a hard 0/1 classifier outcome. These conditions are based on the

false positive and false negative rates (FPR, FNR), as well as the

positive predictive value (PPV) of the score or classifier, which only



(a) Arrested and population
measures τA (dashed) and τP
(solid).

(b) Proportion of arrested
members of group G1 to ar-
restedmembers of groupG2.

Figure 2: Fairness assessment comparison and arrest propor-
tion, the missing link.

witnesses people who have been arrested. Our analysis considers

the entire system and not just the sentencing stage so that we make

explicit the condition “arrest”. In the following A stands for the

arrest variable, R for true recidivism, J is the output of the classifier,
and G is the group membership.

Definition 1 (A-conditioned Predictive Parity). A system
implementing classifier J satisfies A-conditioned predictive parity if
the probability of true recidivism, given a positive classifier assignment
and given A, is the same across groups. That is: P(R = 1|J = 1,A =
1,G = G1) = P(R = 1|J = 1,A = 1,G = G2). We refer to these
probabilities as PPVA(д).

Definition 2 (A-conditioned Error Rate Balance). A system
implementing classifier J satisfies A-conditioned error rate balance
if the False Positive and False Negative Rates, given A, are the same
across groups. That is: P(J = 1|R = 0,A = 1,G = G1) = P(J =
1|R = 0,A = 1,G = G2) for the FPR, and P(J = 0|R = 1,A = 1,G =
G1) = P(J = 0|R = 1,A = 1,G = G2) for the FNR. We refer to these
probabilities as FPRA(д) and FNRA(д).

Notice two main differences from [6]: First, we talk about a

system implementing a classifier, as opposed to the classifier itself.

Second we condition on the arrest variable A.
Equation (2.6) of [6] describes the relationship among PPV, FPR,

FNR, and prevalence pA(д) = P(R = 1|G = д,A = 1). With our

notation: FPRA(д) =
pA(д)

1−pA(д)
1−PPVA(д)
PPVA(д)

(1−FNRA(д)). As stated in

[6], if the prevalence differs across groups, we cannot obtain ERB

and PP simultaneously. If prevalence is equal between the groups,

however, it is possible to satisfy all of these fairness metrics.

It is easy to show that for our model FPRA(д) = rc , FNRA(д) =
1−rc , and PPVA(д) = r0. While this fairness outcome is satisfactory

for the classifier itself, it doesn’t provide information about system-

wide fairness. To assess overall fairness in our model we can add

the deviations from the ideal case, by defining the quantity τA :=���1 − PPVA(G1)

PPVA(G2)

��� + ���1 − F PRA(G1)

F PRA(G2)

��� + ���1 − FNRA(G1)

FNRA(G2)

���. In the ideal case

the numerator and denominator of each component are equal and

therefore τA = 0.

In Figure 2a we plot the averaged value of τA (dashed lines) over

30 simulations for different values of the parameterθ . τA approaches

zero as the system stabilizes. However, as we will shortly see, there

is still an unfair process not captured in this: the proportion of

arrests among different groups. In Figure 2b we plot the ratio of

arrestedmembers ofG1 to arrestedmembers ofG2, averaged over 30

runs. This time we note the arrest rates are highly disproportionate.

In particular low values of θ (the probability with which cops follow
the prior stigma of a neighborhood) lead to almost equal arrest rate.

Large values of θ , however, can lead to ever-increasing extreme

disparities between both arrest rates.

Disproportionate arrest rates are not justified when crime rates

are the same and should be considered part of the fairness as-

sessment. The observed difference could be explained by differ-

ences in crime rates; however, as already mentioned, the agents

in the model commit crime at constant rate independent of group

membership. There is another element driving these ratios up-

ward. Recognizing this element motivates us to introduce popu-

lation fairness metrics. Analogous to the previous definitions, we

define Population Error Rate Balance as a system satisfying

P(J = 1|R = 0,G = G1) = P(J = 1|R = 0,G = G2) for FPR and simi-

larly for FNR. We also define Population Predictive Parity as a

system for which P(R = 1|J = 1,G = G1) = P(R = 1|J = 1,G = G2).

It is straightforward to show that Population PPV equals A-

conditioned PPV and hence population and arrest PP are equal

conditions in this case. We now define a new overall measure

of fairness, this time for the population: τP :=

���1 − PPVP (G1)

PPVP (G2)

��� +���1 − F PRP (G1)

F PRP (G2)

���+ ���1 − FNRP (G1)

FNRP (G2)

���. Figure 2a shows τP averaged over

30 runs for several values of θ . This time we can easily see the

discrepancy of results. If we consider how the implementation of

the algorithms affects the whole population, taking into account

the context under which data is collected, bias surfaces to light.

By adapting Chouldechova’s trade-off to the new case, we obtain:

FPRP (д) =
pP (д)

1−pP (д)
1−PPVP (д)
PPVP (д)

(1− FNRP (д)), where the population

prevalence pP (д) = P(R = 1|G = д). Again, ERB cannot be achieved

because the prevalence is different, this time we get pP (д) = P(R =
1|G = д,A = 1)P(A = 1|G = д) which reveals the new culprit P(A =
1|G = д), the probability of arrest. Since this probability varies by

group G, prevalence also depends on G. Remember, however, that

cops in our model did not discriminate when they observed crime,

and both groups had the same crime rate. What then leads to the

different arrest probability? Well, although, unfortunately, there

is well-documented evidence of disparities in arrest rates among

different demographic groups as well as arrests and convictions of

innocent people (see for example [18], [39] and the many articles

in [38]), we do not treat such case here, and we assume the cops

do not arrest when there is no crime or at disproportionate rates.

Then we obtain P(A = 1|G) = P(A = 1|C = 1,G)P(C = 1|G). There
are two reasons for which arrest probability would be different,

crime rate and arrest probability given a crime is committed. We

can similarly further break up P(A = 1|C = 1,G) conditioning on
the cop being present, and it is then that the surveillance rate is

revealed. We conclude that even if anything else in the system

is “fair”, dissimilar surveillance rates propitiate unfair outcomes.

As our model shows, there is no need for cops to discriminate

themselves, nor to surveil differently across groups. The only thing

in our model enforcing systemic discrimination is that cops follow

the historic stigma of a region, and that in the initial conditions

there is a higher distribution of cops in the first group’s region.



(a) Full causal graph

(b) Simpli-
fied causal
graph with
intervention

Figure 3: Causal graph and simplified intervention model.

4.1 Causal Effect of Policing Parameters
A guiding principle for the paper is to provide possible causal

mechanisms in addition to causal relations. Since the structure of

ABMs is mechanistic in nature, ABMs are good candidates to fulfill

this principle. The affinity to ascribe causal mechanisms for ABMs

is set by any causal framework formulated around counterfactual

outcomes (see [17]). Each simulation run (given a specified set of

initial conditions) can be considered a counterfactual (see [23]), and

it is under this framework that we explore the outcomes of our

model.

A full causal graphwould at least include the relationships shown

in figure 3a. The U variables represent endogenous variables, (p, q)
are the coordinates of civilians and cops, respectively, c0 is a variable
crime rate while ψc is a binary crime indicator, Z are personal

characteristics and Q0 is the bias with which cops are placed on

the first zone at the beginning. We have made some assumptions

in our ABM model that simplify the full graph. For example, the

crime rate is held constant, while arrests by cops depend only on

having committed a crime, and the probability with which cops will

surveill with stigma is independent of their current location. Since

our outcome of interest is the variable τ , after intervening onQ0 and

θ , we can group all other variables into variablesU and V and hence

further simplify the graph. We are now ready to consider different

intervention outcomes. We do this by setting particular values of θ
and Q0. The resulting model is shown in figure 3b, which provides

us with the distribution of interest: P(τ |do(θ = θ ),do(Q0 = q0)),
see [31], and [30]. Therefore, we can estimate causal effects from

the outcome distributions.

For simplicity we focus on τ 1A := 1 −
F PRA(G1)

F PRA(G2)
, and τ 1P , defined

similarly. To estimate these outcomes for different values of θ and

q0 we ran a simulation of the model for 5000 steps and computed

the outcomes at the last step. We then averaged over 60 of these

runs. We chose q0 ∈ {.5, .8} and θ ∈ {0, .25, .5, .75, 1}. Figure 4

shows the kernel density estimates of the outcomes for the dif-

ferent combinations of (q0, θ ). The first row shows the results for

q0 = .5 and the second those of q0 = .8. We notice that indepen-

dent of the value of (q0, θ ), τ
1

A concentrates much more around its

means than τ 1P . Furthermore, this mean is close to zero (desired

outcome), as expected. This is not surprising in light of the results

of section 4. What is surprising is that such stark difference prevails

even for the “fair” initial allocation of cops dictated by q0 = .5. The
means of τ 1P given q0 = .5 are indeed close to zero (see figure 5a),

however, there is a nonnegligible amount of mass away from zero.

Figure 4: distributions of outcomes for q0 = .5 (first row) and
q0 = .8 (second row). Each column is a value of theta, from
low to high, in {0, .25, .75, 1}.

(a) Outcome means for pop-
ulation

(b)Difference betweenpopu-
lation and arrested outcome
means

Figure 5: Comparison between outcome means for arrested
and overall populations.

This is because with an even distribution of cops on the two group

neighborhoods, converging into a state of high stigma differences is

equally likely across groups, but it remains a likely situation. That

is, the mere dynamics of stigmatic surveillance make unfair popu-

lation outcomes likely. The case q0 = .8 is more drastic. We again

have a great amount of mass away from zero, but also the means

have shifted away from zero, showing a negative bias towards the

non-privileged group. In Figure 5a we can see how rapidly the

means move away from zero whenever θ > 0. A comparison of the

outcomes means between τ 1P and τ 1A is shown in figure 5b.

4.2 Finding Optimal Policies
The last guiding principle revolves around optimal interventions.

To explore how to satisfy such principle we setup a simple multi-

armed bandit problem [37]. We focus on the case q0 = .5, and τ
1

P .

The set of actions to be taken is the set of possible values for θ :
{0, .25, .5, .75, 1}. The rewards are binary, based on the outcomes

from section 4.1, in which a 1 is assigned if τ 1P does not exceed

a tolerance value ϵtol = .5. These are measured after letting the

ABM run with the chosen value of θ for 3000 steps. The goal is

to explore values of θ and design a policy to choose the θ that

maximizes expected reward. While for the simple model it was easy

to determine an optimal value of θ = 0, this stagewill be particularly

beneficial in any future model with many more parameters and not

explicitly tractable behavior.

We used an ϵ-greedy algorithm with ϵ = .1 and with value

function of an action equal to the average reward obtained when

that action was chosen. Figure 6a shows the expected reward for



(a) Expected reward over 30

runs of the simulation.

(b) Proportion of an ac-
tion taken by ϵ -greedy
algorithm.

Figure 6: Expected reward and proportion of actions taken
according to these rewards.

different actions over 30 runs of 3000 steps each. Figure 6b shows

the proportion of times a specific action was taken. It does not take

many runs for the algorithm to realize the optimal action is θ = 0,

that is, completely unbiased surveillance. Similar results hold for

different values of q0.
This simple example shows a reinforcement learning scenario

is able to produce an optimal policy choice when dealing with

this particular ABM model. Although simple, the purpose of this

example is to be a precursor for more complicated settings. In

reality, ABMs will have more than one parameter for which we’ll

want to create a policy. For example, we could introduce a “social

worker” agent, a policy would then involve both θ as well as the

distribution and behavior of these new social workers, a resource

trade-off between social workers and cops, etc. The more we refine

our basic AB model the more the need to have an automated way

to learn an optimal policy. We believe reinforcement learning is a

good candidate for such an enterprise.

5 CONCLUSION AND FUTUREWORK
We have presented a simple agent-based model with the aim of

understanding some elements that give rise to inequality in an

arrest-sentence system. With the aid of the model we discovered

discrimination can occur at the population level, even if this dis-

crimination is not apparent when studying the algorithmic tool

in isolation. Through population level fairness metrics the model

indeed shows highly disparate results. An important takeaway is

that under very simple assumptions about agent and cop behavior,

including constant crime and recidivism rate, as well as unbiased

arrest in the presence of crime, discrimination can still arise as a

consequence of prior history. The best way be de-bias the system

we study is for the cops to ignore the stigma of neighborhoods, and

follow a random path.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for

their comments and the University of Colorado Data Science to

Patient Value (D2V) Initiative and Grohne-Stapp Endowment from

the University of Colorado Cancer Center

REFERENCES
[1] Michelle Alexander. 2012. The new Jim Crow: Mass incarceration in the age of

colorblindness. The New Press.

[2] James M Anderson and Paul Heaton. 2012. How much difference does the lawyer

make: The effect of defense counsel on murder case outcomes. Yale Law J. 122
(2012), 154.

[3] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. Machine

bias: There’s software used across the country to predict future criminals and

it’s biased against blacks. ProPublica (2016).
[4] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth.

2018. Fairness in criminal justice risk assessments: The State of the Art. Sociolog-
ical Methods & Research (2018).

[5] Richard A Berk and Justin Bleich. 2013. Statistical procedures for forecasting

criminal behavior: A comparative assessment. Criminology & Public Policy 12, 3

(2013), 513–544.

[6] Alexandra Chouldechova. 2017. Fair prediction with disparate impact: A study

of bias in recidivism prediction instruments. Big data 5, 2 (2017), 153–163.
[7] Julia Dressel and Hany Farid. 2018. The accuracy, fairness, and limits of predicting

recidivism. Science advances 4, 1 (2018).
[8] Cynthia Dwork and Christina Ilvento. 2018. Fairness under composition. arXiv

preprint arXiv:1806.06122 (2018).
[9] Danielle Ensign, Sorelle A Friedler, Scott Neville, Carlos Scheidegger, and Suresh

Venkatasubramanian. 2017. Runaway feedback loops in predictive policing. In

Proceedings of Machine Learning Research, Vol. 81.
[10] Danielle Ensign, Frielder Sorelle, Neville Scott, Scheidegger Carlos, and Venkata-

subramanian Suresh. 2018. Decisionmaking with limited feedback. InAlgorithmic
Learning Theory. 359–367.

[11] Joshua M Epstein. 2006. Generative social science: Studies in agent-based computa-
tional modeling. Princeton University Press.

[12] Virginia Eubanks. 2018. Automating inequality: How high-tech tools profile, police,
and punish the poor. St. Martin’s Press.

[13] Silvia Federici. 2004. Caliban and the Witch. Autonomedia.

[14] Andrew Guthrie Ferguson. 2017. The Rise of Big Data Policing: Surveillance, Race,
and the Future of Law Enforcement. NYU Press.

[15] Sorelle A Friedler, Carlos Scheidegger, Suresh Venkatasubramanian, Sonam

Choudhary, Evan P Hamilton, and Derek Roth. 2018. A comparative study

of fairness-enhancing interventions in machine learning. arXiv preprint
arXiv:1802.04422 (2018).

[16] Rachel Goodman. Winter 2018. Algorithms and civil rights: understanding the

issues. Civil Rights Insider (Winter 2018), 3–4.

[17] Peter Hedström and Petri Ylikoski. 2010. Causal mechanisms in the social sciences.

Annual review of sociology 36 (2010), 49–67.

[18] Innocence Project. 2019. https://www.innocenceproject.org/. Accessed

21/MAR/2019.

[19] Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. 2016. How we

analyzed the COMPAS recidivism algorithm. ProPublica (2016).
[20] Kristian Lum and William Isaac. 2016. To predict and serve? Significance 13, 5

(2016), 14–19.

[21] Michael Macy and Andreas Flache. 2009. Social dynamics from the bottom up:

Agent-based models of social interaction. The Oxford handbook of analytical
sociology (2009), 245–268.

[22] Michael W Macy and Robert Willer. 2002. From factors to actors: computational

sociology and agent-based modeling. Annual review of sociology 28, 1 (2002),

143–166.

[23] Brandon DLMarshall and Sandro Galea. 2014. Formalizing the role of agent-based

modeling in causal inference and epidemiology. American journal of epidemiology
181, 2 (2014), 92–99.

[24] Karl Marx. 1867. Capital: Volume 1: A Critique of Political Economy. Penguin
Classics. Reprint 1990.

[25] Mary Jo Maynes and Ann Waltner. 2012. The Family: A World History. Oxford
University Press.

[26] Andrew Morgan and Rafael Pass. 2019. Paradoxes in Fair Computer-Aided

Decision Making. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society. ACM, 85–90.

[27] Daniel S Nagin and G Matthew Snodgrass. 2013. The effect of incarceration on

re-offending: Evidence from a natural experiment in Pennsylvania. Journal of
Quantitative Criminology 29, 4 (2013), 601–642.

[28] Arvind Narayanan. 2018. FAT* 2018 Translation Tutorial: 21 Definitions of

Fairness and Their Politics. https://www.youtube.com/watch?v=wqamrPkF5kk.

Accessed 23/AUG/2018.

[29] Cathy O’Neill. 2016. Weapons of math destruction: How big data increases inequal-
ity and threatens democracy. Penguin.

[30] Judea Pearl et al. 2009. Causal inference in statistics: An overview. Statistics
surveys 3 (2009), 96–146.

[31] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. 2017. Elements of causal
inference: foundations and learning algorithms. MIT press.

[32] Hazhir Rahmandad and John Sterman. 2008. Heterogeneity and network structure

in the dynamics of diffusion: Comparing agent-based and differential equation

models. Management Science 54, 5 (2008), 998–1014.
[33] Greg Ridgeway. 2019. Experiments in Criminology: Improving Our Understand-

ing of Crime and the Criminal Justice System. Annual Review of Statistics and Its

https://www.innocenceproject.org/
https://www.youtube.com/watch?v=wqamrPkF5kk


Application 0 (2019).

[34] Thomas C Schelling. 1969. Models of segregation. The American Economic Review
59, 2 (1969), 488–493.

[35] Thomas C Schelling. 1971. Dynamic models of segregation. Journal of mathe-
matical sociology 1, 2 (1971), 143–186.

[36] Ray J Solomonoff. 1964. A formal theory of inductive inference. Part I. Information
and control 7, 1 (1964), 1–22.

[37] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[38] The New York Times. 2019. False Arrests, Convictions and Imprison-

ments. https://www.nytimes.com/topic/subject/false-arrests-convictions-and-

imprisonments. Accessed 21/MAR/2019.

[39] The Sentencing Project. 2019. Report to the United Nations on Racial Dispar-

ities in the U.S. Criminal Justice System. https://www.sentencingproject.org/

publications/un-report-on-racial-disparities/. Accessed 21/MAR/2019.

[40] Uri Wilensky and William Rand. 2015. An introduction to agent-based modeling:
modeling natural, social, and engineered complex systems with NetLogo. MIT

Press.

A MODEL DETAILS
A.1 The World.
Agrid inwhich agents canmove and act, divided in two regions

accounting for the neighborhoods in which our two types of

agents (besides cops) interact. Cops will be able to move freely

between regions, while the two population types are assumed

restricted to one region, with no interaction among them. Such

constraint reflects the way most neighborhoods have statisti-

cally skewed demographics. Indeed, an early example of ABM’s

aimed to explain racial segregation [34], [35]. There are no fur-

ther constraints in the original setup of the world.

A.2 The population agents.
Two types: groupsG1 andG2, where the groups are taken to rep-

resent a distinction over one ormore sensitive or protected vari-

ables. For example, groupG1 could be a minority as defined by

socially arbitrary racial categorizations, while groupG2 would

be the majority or privileged group (say, white defendants). Be-

sides position p(i)t of agent i at time t , their parameters are:

Crime rate. The rate c0 at which agents commit crime. In this

toy model such rate is kept constant across individuals, inde-

pendent of group membership. Although in many cases true

crime rates are not known, there is reason to believe some ac-

tions considered crime are constant across demographics groups,

for example, drug use [20].

Recidivism rate. The rate r0 at which individuals recidivate.

Although this parameter is hard to estimate from real data, nu-

merous studies provide evidence that prison sentences do not

affect likelihood of rearrest, allowing us to make the simplified

assumption that the classifier’s decision and the iteration time

won’t affect r0, see [27], [33].

A.3 Cop agents.
Cops are allowed to move freely among group neighborhoods.

They are initially unevenly distributed among the populations,

with a ratio of q0 in the discriminated group. We encode the

cops positions in the vector q. Cops also have the following

parameters:

Arrest rate given crime observed. In this simple model we also

simplify the behavior of cops by assuming a constant arrest

rate given crime observed ra . Notice that this simplification is

in general unrealistic as racial bias is well-documented among

police ([20], [1]). However, there are instances in which race,

at least directly, is not an influencing factor for arrest, as is the

case of traffic violation and the so called “veil of darkness”, [33].

Note, however, that a backdoor path is possible through, for

example, car make, year, and well-kept status. In the simplest

of cases we have set ra = 1.

Surveillance bias. Cops direct their surveillance efforts by

“following their nose”. As explained below, there is a stigma

field in the neighborhoods which the cops use to choose where

to patrol. We denote by θ the rate at which cops follow a stig-

matized route.

A.4 The classifier.
During this toy model we will keep the classifier as simple as

possible, so we choose a random classifier with a jail sentenc-

ing rate of rc . As unrealistic as this may seem, courts random-

ize assignment of defense lawyers and judges to defendants. In

many cases the incarceration rates differ dramatically accord-

ing to such assignment, allowing us to justify rc in this case

as the probability of being assigned a good/bad lawyer and a

lenient/strict judge [2].

A.5 Stigma Field.
There is a variable at each point in space we call the “Stigma

Field”. It represents the bias towards a region where crime has

been recorded. It is initialized to be zero.

A.6 The Setup.
The initial conditions can be described by the following param-

eters: Population size. An original population size NG for each

group. At the beginning we assume it to be the same across

groups. Original configuration. At the beginning the agent pop-
ulation is randomly distributed across the grid points in their

particular regions. Cop distribution. The cops are also placed at
random but with a bias q0 are placed in one region, while only

1 − q0 are placed in the other. Note this is only their original

configuration, they can still move between regions.

A.7 Dynamics
Population agents first move to a neighboring cell at random

and then, with probability c0, commit a crime. Cops first, with

probability θ , move to the neighboring cell with the highest

value of the Stigma Field. Then face a random direction. With

probabilityω, movemc steps, otherwise move one step. Finally

they arrest agents in neighboring cells that have committed a

crime this iteration. When arrest happens in a cell, we increase

the Stigma Field at place of arrest by a given amount, and at

neighboring cells by smaller but nonzero amount. An arrested

agent is judged by the classifier with hard 0/1 assignment and,

with probability r0, recidivates.
Regarding the parameters of our particular model, we chose

the crime rate to be c0 = .01. The recidivism rate was r0 = .4;
we chose recidivism rate this large not because it reflects truth

but because it helped the model stabilize faster, smaller values

also work. We also picked an initial population size of 100 and

a cop probability of moving away from its position ω = .1 and
mc = 3.

https://www.nytimes.com/topic/subject/false-arrests-convictions-and-imprisonments
https://www.nytimes.com/topic/subject/false-arrests-convictions-and-imprisonments
https://www.sentencingproject.org/publications/un-report-on-racial-disparities/
https://www.sentencingproject.org/publications/un-report-on-racial-disparities/
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